Course Content
- Basic Python
Python Introduction & Installation (Anaconda)
Basic Operation:
- Addition
- Subtraction
- Multiplication
- Division. etc
Types of Data & Manipulation:
- List
- Tuple
- Set
- Dictionaries
- String
- Numeric
- Float
- Boolean. Etc
- Tuple
Loops:
- For
- While
- If-else-if
NumPy Library & Operation:
- Introduction to NumPy
- Array Creation
- Array Indexing
- Array Slicing
- Array Manipulation
Pandas Library & Operation:
- Introduction to Pandas
- Read Different Type of Dataset
- DataFrames
- Groupby, Merging, joining, & Concatenating.
- Missing Data. etc
Matplot & Seaborn Library & Operation:
- Line, bar chart
- Scatter chart
- Pie chart
- Box plot
- Countplot
- Jointplot
- Pairplot Etc.
2. Statistics & Probability:
- Types of Data,
- Random Variable.
- Mean, Mode, MedianVariance,
- range & Std Deviation
- Central Limit Theorem
Probability & Probability Distribution:
- Introduction of Probability.
- Conditional Probability.
- Binomial Distribution.
- Poisson Distribution.
- Normal Distribution.
Hypothesis Testing:
- Introduction of Hypothesis (Null Hypothesis & Alternative Hypothesis)
- Type 1 Error & Type 2 Error
- T-test
- Z-test
- ANOVA
- F-test
- Chi- Square Test.
- P-value
Correlation & Covariance:
- Introduction of Correlation.
- Positive & Negative Correlation & Covariance.
- Multi-Collinearity
- VIF
3. Machine Learning:
Feature Engineering
- Handling Missing Value.
- Handling Outliers
- Handling Imbalance Data
- SMOTE
- Feature Scaling
- Standardization
- Normalization.
- Min-Max Scaling
- Data Encoding.
- PCA (Principle Component Analysis)
Feature Selection:
- Feature Selection.
- Forward Elimination.
- Backward Elimination
Exploratory Data Analysis
Regression:
- Linear Regression.
- Gradient Descent.
- Multiple Linear Regression.
- Polynomial Regression.
- R Square & Adjusted R Square.
- RMSE, MSE, MAE.
- Ridge Regression.
- Lasso Regression.
- Concept of Overfitting & Underfitting.
Logistic Regression:
- Introduction to Logistic Regression.
- Confusion Matrix.
- Precision, Recall, F1 Score, ROC Curve, AUC Curve.
Support Vector Machines:
- Introduction to Support Vector Machine.
- Confusion Matrix.
- Precision, Recall, F1 Score, ROC Curve, AUC Curve.
Naïve Bayes:
- Introduction to Support Vector Machine.
- Confusion Matrix.
- Precision, Recall, F1 Score, ROC Curve, AUC Curve.
KNN-Classification:
- Introduction to KNN Classification.
- Confusion Matrix.
- Precision, Recall, F1 Score, ROC Curve, AUC Curve.
Decision Tree:
- Introduction to Decision Tree.
- Confusion Matrix.
- Precision, Recall, F1 Score, ROC Curve, AUC Curve.
Random Forest:
- Introduction to Decision Tree.
- Confusion Matrix.
- Precision, Recall, F1 Score, ROC Curve, AUC Curve.
Clustering:
- K-means Clustering.
- K-Means++.
- Hierarchical Clustering.