Data Science

Course Content

  1. Basic Python

Python Introduction & Installation (Anaconda)

Basic Operation:

  • Addition
    • Subtraction
    • Multiplication
    • Division. etc

Types of Data & Manipulation:

  • List
    • Tuple
      • Set
      • Dictionaries
      • String
      • Numeric
      • Float
      • Boolean. Etc

Loops:

  • For
    • While
    • If-else-if

NumPy Library & Operation:

  • Introduction to NumPy
    • Array Creation
    • Array Indexing
    • Array Slicing
    • Array Manipulation

Pandas Library & Operation:

  • Introduction to Pandas
    • Read Different Type of Dataset
    • DataFrames
    • Groupby, Merging, joining, & Concatenating.
    • Missing Data. etc

Matplot & Seaborn Library & Operation:

  • Line, bar chart
    • Scatter chart
    • Pie chart
    • Box plot
    • Countplot
    • Jointplot
    • Pairplot Etc.

2. Statistics & Probability:

  • Types of Data,
  • Random Variable.
  • Mean, Mode, MedianVariance,
  • range & Std Deviation
  • Central Limit Theorem

Probability & Probability Distribution: 

  • Introduction of Probability.
    • Conditional Probability.
    • Binomial Distribution.
    • Poisson Distribution.
    • Normal Distribution.

Hypothesis Testing:

  • Introduction of Hypothesis (Null Hypothesis & Alternative Hypothesis)
    • Type 1 Error & Type 2 Error
    • T-test
    • Z-test
    • ANOVA
    • F-test
    • Chi- Square Test.
    • P-value

Correlation & Covariance:

  • Introduction of Correlation.       
    • Positive & Negative Correlation & Covariance.
    • Multi-Collinearity
    • VIF

3. Machine Learning:

Feature Engineering

  • Handling Missing Value.
  • Handling Outliers
  • Handling Imbalance Data
  • SMOTE
  • Feature Scaling
  • Standardization
  • Normalization.
  • Min-Max Scaling
  • Data Encoding.
  • PCA (Principle Component Analysis)

Feature Selection:

  • Feature Selection.
  • Forward Elimination.
  • Backward Elimination

Exploratory Data Analysis

Regression:

  • Linear Regression.
  • Gradient Descent.
  • Multiple Linear Regression.
  • Polynomial Regression.
  • R Square & Adjusted R Square.
  • RMSE, MSE, MAE.
  • Ridge Regression.
  • Lasso Regression.
  • Concept of Overfitting & Underfitting.

Logistic Regression:

  • Introduction to Logistic Regression.
  • Confusion Matrix.
  • Precision, Recall, F1 Score, ROC Curve, AUC Curve.

Support Vector Machines:

  • Introduction to Support Vector Machine.
  • Confusion Matrix.
  • Precision, Recall, F1 Score, ROC Curve, AUC Curve.

Naïve Bayes:

  • Introduction to Support Vector Machine.
  • Confusion Matrix.
  • Precision, Recall, F1 Score, ROC Curve, AUC Curve.

KNN-Classification:

  • Introduction to KNN Classification.
  • Confusion Matrix.
  • Precision, Recall, F1 Score, ROC Curve, AUC Curve.

Decision Tree:

  • Introduction to Decision Tree.
  • Confusion Matrix.
  • Precision, Recall, F1 Score, ROC Curve, AUC Curve.

Random Forest:

  • Introduction to Decision Tree.
  • Confusion Matrix.
  • Precision, Recall, F1 Score, ROC Curve, AUC Curve.

Clustering:

  • K-means Clustering.
  • K-Means++.
  • Hierarchical Clustering.

Leave a Comment

Your email address will not be published. Required fields are marked *